Phosphorylation of calmodulin by permeabilized fibroblasts overexpressing the human epidermal growth factor receptor.

نویسندگان

  • T De Frutos
  • J Martín-Nieto
  • A Villalobo
چکیده

Detergent-permeabilized EGFR-T17 fibroblasts, which overexpress the human epidermal growth factor (EGF) receptor, phosphorylate both poly-L-(glutamic acid, tyrosine) and exogenous calmodulin in an EGF-stimulated manner. Phosphorylation of calmodulin requires the presence of cationic polypeptides, such as poly-L-(lysine) or histones, which exert a biphasic effect toward calmodulin phosphorylation. Optimum cationic polypeptide/calmodulin molar ratios of 0.3 and 7 were determined for poly-L-(lysine) and histones, respectively. Maximum levels of calmodulin phosphorylation were attained in the absence of free calcium, and a strong inhibition of this process was observed at very low concentrations (Ki = 0.2 microM) of this cation. The incorporation of phosphate into calmodulin occurred predominantly on tyrosine residue(s) and was stimulated 34-fold by EGF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts.

We have shown previously (Villalonga, P., López- Alcalá, C., Bosch, M., Chiloeches, A., Rocamora, N., Gil, J., Marais, R., Marshall, C. J., Bachs, O., and Agell, N. (2001) Mol. Cell. Biol. 21, 7345-7354) that calmodulin negatively regulates Ras activation in fibroblasts. Hence, anti-calmodulin drugs (such as W13, trifluoroperazine, or W7) are able to induce Ras/ERK pathway activation under low ...

متن کامل

Evidence for the direct interaction between calmodulin and the human epidermal growth factor receptor.

Previous work from our laboratory has demonstrated that the Ca(2+)-calmodulin complex inhibits the intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR), and that the receptor can be isolated by Ca(2+)-dependent calmodulin-affinity chromatography [San José, Bengurija, Geller and Villalobo (1992) J. Biol. Chem. 267, 15237-15245]. Moreover, we have demonstrated that th...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor.

The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase ...

متن کامل

Effects of platelet-derived growth factor on phosphorylation of the epidermal growth factor receptor in human skin fibroblasts.

Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological chemistry

دوره 378 1  شماره 

صفحات  -

تاریخ انتشار 1997